Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plantation forestry under global warming: hybrid poplars with improved thermotolerance provide new insights on the in vivo function of small heat shock protein chaperones.

Identifieur interne : 002101 ( Main/Exploration ); précédent : 002100; suivant : 002102

Plantation forestry under global warming: hybrid poplars with improved thermotolerance provide new insights on the in vivo function of small heat shock protein chaperones.

Auteurs : Irene Merino [Espagne] ; Angela Contreras ; Zhong-Ping Jing ; Fernando Gallardo ; Francisco M. Cánovas ; Luis G Mez

Source :

RBID : pubmed:24306533

Descripteurs français

English descriptors

Abstract

Climate-driven heat stress is a key factor affecting forest plantation yields. While its effects are expected to worsen during this century, breeding more tolerant genotypes has proven elusive. We report here a substantial and durable increase in the thermotolerance of hybrid poplar (Populus tremula×Populus alba) through overexpression of a major small heat shock protein (sHSP) with convenient features. Experimental evidence was obtained linking protective effects in the transgenic events with the unique chaperone activity of sHSPs. In addition, significant positive correlations were observed between phenotype strength and heterologous sHSP accumulation. The remarkable baseline levels of transgene product (up to 1.8% of total leaf protein) have not been reported in analogous studies with herbaceous species. As judged by protein analyses, such an accumulation is not matched either by endogenous sHSPs in both heat-stressed poplar plants and field-grown adult trees. Quantitative real time-polymerase chain reaction analyses supported these observations and allowed us to identify the poplar members most responsive to heat stress. Interestingly, sHSP overaccumulation was not associated with pleiotropic effects that might decrease yields. The poplar lines developed here also outperformed controls under in vitro and ex vitro culture conditions (callus biomass, shoot production, and ex vitro survival), even in the absence of thermal stress. These results reinforce the feasibility of improving valuable genotypes for plantation forestry, a field where in vitro recalcitrance, long breeding cycles, and other practical factors constrain conventional genetic approaches. They also provide new insights into the biological functions of the least understood family of heat shock protein chaperones.

DOI: 10.1104/pp.113.225730
PubMed: 24306533
PubMed Central: PMC3912120


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plantation forestry under global warming: hybrid poplars with improved thermotolerance provide new insights on the in vivo function of small heat shock protein chaperones.</title>
<author>
<name sortKey="Merino, Irene" sort="Merino, Irene" uniqKey="Merino I" first="Irene" last="Merino">Irene Merino</name>
<affiliation wicri:level="3">
<nlm:affiliation>Center for Plant Biotechnology and Genomics, Campus de Montegancedo, Universidad Politecnica de Madrid, 28223 Pozuelo de Alarcon, Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Center for Plant Biotechnology and Genomics, Campus de Montegancedo, Universidad Politecnica de Madrid, 28223 Pozuelo de Alarcon, Madrid</wicri:regionArea>
<placeName>
<settlement type="city">Madrid</settlement>
<region nuts="2" type="region">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Contreras, Angela" sort="Contreras, Angela" uniqKey="Contreras A" first="Angela" last="Contreras">Angela Contreras</name>
</author>
<author>
<name sortKey="Jing, Zhong Ping" sort="Jing, Zhong Ping" uniqKey="Jing Z" first="Zhong-Ping" last="Jing">Zhong-Ping Jing</name>
</author>
<author>
<name sortKey="Gallardo, Fernando" sort="Gallardo, Fernando" uniqKey="Gallardo F" first="Fernando" last="Gallardo">Fernando Gallardo</name>
</author>
<author>
<name sortKey="Canovas, Francisco M" sort="Canovas, Francisco M" uniqKey="Canovas F" first="Francisco M" last="Cánovas">Francisco M. Cánovas</name>
</author>
<author>
<name sortKey="G Mez, Luis" sort="G Mez, Luis" uniqKey="G Mez L" first="Luis" last="G Mez">Luis G Mez</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24306533</idno>
<idno type="pmid">24306533</idno>
<idno type="doi">10.1104/pp.113.225730</idno>
<idno type="pmc">PMC3912120</idno>
<idno type="wicri:Area/Main/Corpus">002384</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002384</idno>
<idno type="wicri:Area/Main/Curation">002384</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002384</idno>
<idno type="wicri:Area/Main/Exploration">002384</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Plantation forestry under global warming: hybrid poplars with improved thermotolerance provide new insights on the in vivo function of small heat shock protein chaperones.</title>
<author>
<name sortKey="Merino, Irene" sort="Merino, Irene" uniqKey="Merino I" first="Irene" last="Merino">Irene Merino</name>
<affiliation wicri:level="3">
<nlm:affiliation>Center for Plant Biotechnology and Genomics, Campus de Montegancedo, Universidad Politecnica de Madrid, 28223 Pozuelo de Alarcon, Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Center for Plant Biotechnology and Genomics, Campus de Montegancedo, Universidad Politecnica de Madrid, 28223 Pozuelo de Alarcon, Madrid</wicri:regionArea>
<placeName>
<settlement type="city">Madrid</settlement>
<region nuts="2" type="region">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Contreras, Angela" sort="Contreras, Angela" uniqKey="Contreras A" first="Angela" last="Contreras">Angela Contreras</name>
</author>
<author>
<name sortKey="Jing, Zhong Ping" sort="Jing, Zhong Ping" uniqKey="Jing Z" first="Zhong-Ping" last="Jing">Zhong-Ping Jing</name>
</author>
<author>
<name sortKey="Gallardo, Fernando" sort="Gallardo, Fernando" uniqKey="Gallardo F" first="Fernando" last="Gallardo">Fernando Gallardo</name>
</author>
<author>
<name sortKey="Canovas, Francisco M" sort="Canovas, Francisco M" uniqKey="Canovas F" first="Francisco M" last="Cánovas">Francisco M. Cánovas</name>
</author>
<author>
<name sortKey="G Mez, Luis" sort="G Mez, Luis" uniqKey="G Mez L" first="Luis" last="G Mez">Luis G Mez</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (drug effects)</term>
<term>Adaptation, Physiological (genetics)</term>
<term>Aminobutyrates (pharmacology)</term>
<term>Enzyme Stability (drug effects)</term>
<term>Forestry (MeSH)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Global Warming (MeSH)</term>
<term>Heat-Shock Proteins, Small (genetics)</term>
<term>Heat-Shock Proteins, Small (metabolism)</term>
<term>Heat-Shock Response (drug effects)</term>
<term>Heat-Shock Response (genetics)</term>
<term>Hippocastanaceae (drug effects)</term>
<term>Hippocastanaceae (metabolism)</term>
<term>Hot Temperature (MeSH)</term>
<term>Hybridization, Genetic (drug effects)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (drug effects)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Transgenes (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (effets des médicaments et des substances chimiques)</term>
<term>Adaptation physiologique (génétique)</term>
<term>Amino-butyrates (pharmacologie)</term>
<term>Feuilles de plante (effets des médicaments et des substances chimiques)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Hippocastanaceae (effets des médicaments et des substances chimiques)</term>
<term>Hippocastanaceae (métabolisme)</term>
<term>Hybridation génétique (effets des médicaments et des substances chimiques)</term>
<term>Petites protéines du choc thermique (génétique)</term>
<term>Petites protéines du choc thermique (métabolisme)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Réaction de choc thermique (effets des médicaments et des substances chimiques)</term>
<term>Réaction de choc thermique (génétique)</term>
<term>Réchauffement de la planète (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Science forêt (MeSH)</term>
<term>Stabilité enzymatique (effets des médicaments et des substances chimiques)</term>
<term>Température élevée (MeSH)</term>
<term>Transgènes (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Heat-Shock Proteins, Small</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Heat-Shock Proteins, Small</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Aminobutyrates</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Enzyme Stability</term>
<term>Gene Expression Regulation, Plant</term>
<term>Heat-Shock Response</term>
<term>Hippocastanaceae</term>
<term>Hybridization, Genetic</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Feuilles de plante</term>
<term>Hippocastanaceae</term>
<term>Hybridation génétique</term>
<term>Populus</term>
<term>Réaction de choc thermique</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stabilité enzymatique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Heat-Shock Response</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Feuilles de plante</term>
<term>Petites protéines du choc thermique</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Réaction de choc thermique</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Hippocastanaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Hippocastanaceae</term>
<term>Petites protéines du choc thermique</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Amino-butyrates</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Forestry</term>
<term>Global Warming</term>
<term>Hot Temperature</term>
<term>Plants, Genetically Modified</term>
<term>Transgenes</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Réchauffement de la planète</term>
<term>Science forêt</term>
<term>Température élevée</term>
<term>Transgènes</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Climate-driven heat stress is a key factor affecting forest plantation yields. While its effects are expected to worsen during this century, breeding more tolerant genotypes has proven elusive. We report here a substantial and durable increase in the thermotolerance of hybrid poplar (Populus tremula×Populus alba) through overexpression of a major small heat shock protein (sHSP) with convenient features. Experimental evidence was obtained linking protective effects in the transgenic events with the unique chaperone activity of sHSPs. In addition, significant positive correlations were observed between phenotype strength and heterologous sHSP accumulation. The remarkable baseline levels of transgene product (up to 1.8% of total leaf protein) have not been reported in analogous studies with herbaceous species. As judged by protein analyses, such an accumulation is not matched either by endogenous sHSPs in both heat-stressed poplar plants and field-grown adult trees. Quantitative real time-polymerase chain reaction analyses supported these observations and allowed us to identify the poplar members most responsive to heat stress. Interestingly, sHSP overaccumulation was not associated with pleiotropic effects that might decrease yields. The poplar lines developed here also outperformed controls under in vitro and ex vitro culture conditions (callus biomass, shoot production, and ex vitro survival), even in the absence of thermal stress. These results reinforce the feasibility of improving valuable genotypes for plantation forestry, a field where in vitro recalcitrance, long breeding cycles, and other practical factors constrain conventional genetic approaches. They also provide new insights into the biological functions of the least understood family of heat shock protein chaperones.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24306533</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>164</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Plantation forestry under global warming: hybrid poplars with improved thermotolerance provide new insights on the in vivo function of small heat shock protein chaperones.</ArticleTitle>
<Pagination>
<MedlinePgn>978-91</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.113.225730</ELocationID>
<Abstract>
<AbstractText>Climate-driven heat stress is a key factor affecting forest plantation yields. While its effects are expected to worsen during this century, breeding more tolerant genotypes has proven elusive. We report here a substantial and durable increase in the thermotolerance of hybrid poplar (Populus tremula×Populus alba) through overexpression of a major small heat shock protein (sHSP) with convenient features. Experimental evidence was obtained linking protective effects in the transgenic events with the unique chaperone activity of sHSPs. In addition, significant positive correlations were observed between phenotype strength and heterologous sHSP accumulation. The remarkable baseline levels of transgene product (up to 1.8% of total leaf protein) have not been reported in analogous studies with herbaceous species. As judged by protein analyses, such an accumulation is not matched either by endogenous sHSPs in both heat-stressed poplar plants and field-grown adult trees. Quantitative real time-polymerase chain reaction analyses supported these observations and allowed us to identify the poplar members most responsive to heat stress. Interestingly, sHSP overaccumulation was not associated with pleiotropic effects that might decrease yields. The poplar lines developed here also outperformed controls under in vitro and ex vitro culture conditions (callus biomass, shoot production, and ex vitro survival), even in the absence of thermal stress. These results reinforce the feasibility of improving valuable genotypes for plantation forestry, a field where in vitro recalcitrance, long breeding cycles, and other practical factors constrain conventional genetic approaches. They also provide new insights into the biological functions of the least understood family of heat shock protein chaperones.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Merino</LastName>
<ForeName>Irene</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Center for Plant Biotechnology and Genomics, Campus de Montegancedo, Universidad Politecnica de Madrid, 28223 Pozuelo de Alarcon, Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Contreras</LastName>
<ForeName>Angela</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jing</LastName>
<ForeName>Zhong-Ping</ForeName>
<Initials>ZP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gallardo</LastName>
<ForeName>Fernando</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cánovas</LastName>
<ForeName>Francisco M</ForeName>
<Initials>FM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gómez</LastName>
<ForeName>Luis</ForeName>
<Initials>L</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>12</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000613">Aminobutyrates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050888">Heat-Shock Proteins, Small</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>51276-47-2</RegistryNumber>
<NameOfSubstance UI="C003121">phosphinothricin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000613" MajorTopicYN="N">Aminobutyrates</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004795" MajorTopicYN="N">Enzyme Stability</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016468" MajorTopicYN="Y">Forestry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057232" MajorTopicYN="Y">Global Warming</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050888" MajorTopicYN="N">Heat-Shock Proteins, Small</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018869" MajorTopicYN="N">Heat-Shock Response</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031318" MajorTopicYN="N">Hippocastanaceae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="Y">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006824" MajorTopicYN="Y">Hybridization, Genetic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019076" MajorTopicYN="N">Transgenes</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24306533</ArticleId>
<ArticleId IdType="pii">pp.113.225730</ArticleId>
<ArticleId IdType="doi">10.1104/pp.113.225730</ArticleId>
<ArticleId IdType="pmc">PMC3912120</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2000 Apr 14;275(15):11451-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10753962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Feb;146(2):748-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18055584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15604-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19717454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1444-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18556546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2012 Mar;37(3):118-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22236506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Allergy Clin Immunol. 2006 Sep;118(3):705-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16950291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Apr;53(370):891-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11912232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Sep;115(1):71-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9306691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Feb;12(2):111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Mar 16;30(6):1173-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21326210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Jan 16;557(1-3):265-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14741379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Stress Chaperones. 2011 Jan;16(1):15-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20694844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2011 Oct 21;413(2):297-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21839090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Feb;17(2):64-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22209522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 27;279(9):7566-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14662763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Sep 26;283(39):26634-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 May;229(6):1269-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19296126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2011 Jan;29(1):9-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20970211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Oct;20(1):89-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10571868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1708-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15064380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1829-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8127889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2001 Dec;8(12):1025-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11702068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2007 Jul;164(7):835-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16904232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 May 12;48(18):3828-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19323523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2005 Oct;12(10):842-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16205709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Stress Chaperones. 1999 Jun;4(2):129-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Sep;27(5):407-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11576425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1991 Oct;185(3):372-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24186421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Apr 8;332(6026):220-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21415316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2009 Apr;176(4):583-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26493149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Jan;64(2):391-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23255280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2009 Jun;27(6):519-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19513052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Jan;9(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Jun;10(3):310-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17482504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Aug;32(8):1046-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19422616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6409-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21464278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Feb 11;23(3):638-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14749732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1999 Nov;210(1):19-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Sep;157(1):132-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21730198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2007-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2005 Apr;16(2):159-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>In Vitro Cell Dev Biol Plant. 2009 Dec;45(6):619-629</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19936031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Jun;26(6):615-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18536678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2012 Mar;37(3):106-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22177323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Mar;189(4):1096-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21158867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jun;120(2):521-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10364403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 1996 Jun;6(4):471-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8842712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jul 29;333(6042):616-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551030</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
<region>
<li>Communauté de Madrid</li>
</region>
<settlement>
<li>Madrid</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Canovas, Francisco M" sort="Canovas, Francisco M" uniqKey="Canovas F" first="Francisco M" last="Cánovas">Francisco M. Cánovas</name>
<name sortKey="Contreras, Angela" sort="Contreras, Angela" uniqKey="Contreras A" first="Angela" last="Contreras">Angela Contreras</name>
<name sortKey="G Mez, Luis" sort="G Mez, Luis" uniqKey="G Mez L" first="Luis" last="G Mez">Luis G Mez</name>
<name sortKey="Gallardo, Fernando" sort="Gallardo, Fernando" uniqKey="Gallardo F" first="Fernando" last="Gallardo">Fernando Gallardo</name>
<name sortKey="Jing, Zhong Ping" sort="Jing, Zhong Ping" uniqKey="Jing Z" first="Zhong-Ping" last="Jing">Zhong-Ping Jing</name>
</noCountry>
<country name="Espagne">
<region name="Communauté de Madrid">
<name sortKey="Merino, Irene" sort="Merino, Irene" uniqKey="Merino I" first="Irene" last="Merino">Irene Merino</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002101 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002101 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24306533
   |texte=   Plantation forestry under global warming: hybrid poplars with improved thermotolerance provide new insights on the in vivo function of small heat shock protein chaperones.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24306533" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020